650 research outputs found

    Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin-like growth factor-I (IGF-I) exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex.</p> <p>Methods</p> <p>An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to <it>Aequorea victoria </it>enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65) was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test.</p> <p>Results</p> <p>IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65) to the cell nucleus.</p> <p>Conclusion</p> <p>These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory reactions in glial cells.</p

    Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous neurological and psychiatric disorders show sex differences in incidence, age of onset, symptomatology or outcome. Astrocytes, one of the glial cell types of the brain, show sex differences in number, differentiation and function. Since astrocytes are involved in the response of neural tissue to injury and inflammation, these cells may participate in the generation of sex differences in the response of the brain to pathological insults. To explore this hypothesis, we have examined whether male and female astrocytes show a different response to an inflammatory challenge and whether perinatal testosterone influences this response.</p> <p>Methods</p> <p>Cortical astrocyte cultures were prepared from postnatal day 1 (one day after birth) male or female CD1 mice pups. In addition, cortical astrocyte cultures were also prepared from female pups that were injected at birth with 100 μg of testosterone propionate or vehicle. Cultures were treated for 5 hours with medium containing lipopolysaccharide (LPS) or with control medium. The mRNA levels of IL6, interferon-inducible protein 10 (IP10), TNFα, IL1β, Toll-like receptor 4 (TLR4), steroidogenic acute regulatory protein and translocator protein were assessed by quantitative real-time polymerase chain reaction. Statistical significance was assessed by unpaired <it>t</it>-test or by one-way analysis of variance followed by the Tukey <it>post hoc </it>test.</p> <p>Results</p> <p>The mRNA levels of IL6, TNFα and IL1β after LPS treatment were significantly higher in astrocytes derived from male or androgenized females compared to astrocytes derived from control or vehicle-injected females. In contrast, IP10 mRNA levels after LPS treatment were higher in astrocytes derived from control or vehicle-injected females than in those obtained from males or androgenized females. The different response of male and female astrocytes to LPS was due neither to differences in the basal expression of the inflammatory molecules nor to differences in the expression of the LPS receptor TLR4. In contrast, the different inflammatory response was associated with increased mRNA levels of translocator protein, a key steroidogenic regulator, in female astrocytes that were treated with LPS.</p> <p>Conclusions</p> <p>Male and female cortical astrocytes respond differentially to an inflammatory challenge and this may be predetermined by perinatal testosterone exposure.</p

    Interaction of gonadal steroids and growth factors in brain sex differentiation

    Get PDF
    Sex hormones have developmental trophic actions on neurons and glial cells and activational effects in the adult brain. It has been proposed that sex steroids may interact with peptide trophic factors to induce part of their biological effects in the nervous system. The first evidence of such an interaction was provided by Toran-Allerand et al (Brain Research 1980; 184: 517-524), showing that in explant cultures of fetal rodent hypothalamus, estrogen and insulin have synergistic effects on neurite growth, an effect probably mediated by insulin-like growth factor-1 receptors. Recent data indicate that estrogen and insulin-like growth factor-1 signaling pathways interact on hypothalamic neurons to regulate survival and differentiation and that sex steroids interact with a variety of different trophic signals in vivo to regulate neuroendocrine events. These findings suggest that trophic factors may be involved in the genesis of sex differences in the developing brain and in the maintenance of a sexually differentiated brain function in the adult.Biomedical Reviews 1997; 7: 67-74

    Developmental Sex Differences in the Metabolism of Cardiolipin in Mouse Cerebral Cortex Mitochondria

    Get PDF
    Cardiolipin (CL) is a mitochondrial-specific phospholipid. CL content and acyl chain composition are crucial for energy production. Given that estradiol induces CL synthesis in neurons, we aimed to assess CL metabolism in the cerebral cortex (CC) of male and female mice during early postnatal life, when sex steroids induce sex-dimorphic maturation of the brain. Despite the fact that total amount of CL was similar, its fatty acid composition differed between males and females at birth. In males, CL was more mature (lower saturation ratio) and the expression of the enzymes involved in synthetic and remodeling pathways was higher, compared to females. Importantly, the sex differences found in CL metabolism were due to the testosterone peak that male mice experience perinatally. These changes were associated with a higher expression of UCP-2 and its activators in the CC of males. Overall, our results suggest that the perinatal testosterone surge in male mice regulates CL biosynthesis and remodeling in the CC, inducing a sex-dimorphic fatty acid composition. In male's CC, CL is more susceptible to peroxidation, likely explaining the testosterone-dependent induction of neuroprotective molecules such as UCP-2. These differences may account for the sex-dependent mitochondrial susceptibility after perinatal hypoxia/ischemia.Instituto de Investigaciones Bioquímicas de La Plat

    Developmental Sex Differences in the Metabolism of Cardiolipin in Mouse Cerebral Cortex Mitochondria

    Get PDF
    Cardiolipin (CL) is a mitochondrial-specific phospholipid. CL content and acyl chain composition are crucial for energy production. Given that estradiol induces CL synthesis in neurons, we aimed to assess CL metabolism in the cerebral cortex (CC) of male and female mice during early postnatal life, when sex steroids induce sex-dimorphic maturation of the brain. Despite the fact that total amount of CL was similar, its fatty acid composition differed between males and females at birth. In males, CL was more mature (lower saturation ratio) and the expression of the enzymes involved in synthetic and remodeling pathways was higher, compared to females. Importantly, the sex differences found in CL metabolism were due to the testosterone peak that male mice experience perinatally. These changes were associated with a higher expression of UCP-2 and its activators in the CC of males. Overall, our results suggest that the perinatal testosterone surge in male mice regulates CL biosynthesis and remodeling in the CC, inducing a sex-dimorphic fatty acid composition. In male's CC, CL is more susceptible to peroxidation, likely explaining the testosterone-dependent induction of neuroprotective molecules such as UCP-2. These differences may account for the sex-dependent mitochondrial susceptibility after perinatal hypoxia/ischemia.Instituto de Investigaciones Bioquímicas de La Plat

    Estradiol uses different mechanisms in astrocytes from the hippocampus of male and female rats to protect against damage Induced by palmitic acid

    Full text link
    An excess of saturated fatty acids can be toxic for tissues, including the brain, and this has been associated with the progression of neurodegenerative diseases. Since palmitic acid (PA) is a free fatty acid that is abundant in the diet and circulation and can be harmful, we have investigated the effects of this fatty acid on lipotoxicity in hippocampal astrocytes and the mechanism involved. Moreover, as males and females have different susceptibilities to some neurodegenerative diseases, we accessed the responses of astrocytes from both sexes, as well as the possible involvement of estrogens in the protection against fatty acid toxicity. PA increased endoplasmic reticulum stress leading to cell death in astrocytes from both males and females. Estradiol (E2) increased the levels of protective factors, such as Hsp70 and the anti-inflammatory cytokine interleukin-10, in astrocytes from both sexes. In male astrocytes, E2 decreased pJNK, TNFα, and caspase-3 activation. In contrast, in female astrocytes E2 did not affect the activation of JNK or TNFα levels, but decreased apoptotic cell death. Hence, although E2 exerted protective effects against the detrimental effects of PA, the mechanisms involved appear to be different between male and female astrocytes. This sexually dimorphic difference in the protective mechanisms induced by E2 could be involved in the different susceptibilities of males and females to some neurodegenerative processesThis work was funded by grants from Ministerio de Ciencia e Innovación (BFU2014-51836-C2-2-R to JC and BFU2014-51836-C2-1-R to LG-S) and Fondos de Investigación Sanitaria (Grant PI16/00485 to JA), co-funded by European FEDER Program, and Centro de Investigación Biomédica en Red Fisiopatología de Obesidad y Nutrición (CIBEROBN) of the Instituto de Salud Carlos III, and Fundación de Endocrinología y Nutrició

    A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling

    Get PDF
    Abstract The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior

    G Protein-Coupled Estrogen Receptor Immunoreactivity Fluctuates During the Estrous Cycle and Show Sex Differences in the Amygdala and Dorsal Hippocampus

    Get PDF
    G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and β in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle. In this study we performed a morphometric analysis of GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral, basomedial and central subdivisions of the amygdala and in all the histological layers of CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER immunoreactive cells was estimated in these different structures. GPER immunoreactivity was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal hippocampal formation. The number of GPER immunoreactive cells was higher in males than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala (P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral amygdala (P < 0.05); higher in diestrus females than in estrus females in the central (P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer (P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that estrogenic regulation of the amygdala and hippocampus through GPER may be different in males and in females and may fluctuate during the estrous cycle.This study was supported by Ministero dell'Istruzione, dell'Università e della Ricerca, Italy (MIUR project Dipartimenti di Eccellenza 2018–2022) to Department of Neuroscience Rita Levi Montalcini, Agencia Estatal de Investigación, Spain (BFU2017-82754-R, PSI2017-86396-P), Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid and Fondos FEDER, GRUPOS UCM-BSCH 951579. MM fellowship was generously granted by Prof. G. C. Bergui

    Developmental Sex Differences in the Metabolism of Cardiolipin in Mouse Cerebral Cortex Mitochondria

    Get PDF
    Cardiolipin (CL) is a mitochondrial-specific phospholipid. CL content and acyl chain composition are crucial for energy production. Given that estradiol induces CL synthesis in neurons, we aimed to assess CL metabolism in the cerebral cortex (CC) of male and female mice during early postnatal life, when sex steroids induce sex-dimorphic maturation of the brain. Despite the fact that total amount of CL was similar, its fatty acid composition differed between males and females at birth. In males, CL was more mature (lower saturation ratio) and the expression of the enzymes involved in synthetic and remodeling pathways was higher, compared to females. Importantly, the sex differences found in CL metabolism were due to the testosterone peak that male mice experience perinatally. These changes were associated with a higher expression of UCP-2 and its activators in the CC of males. Overall, our results suggest that the perinatal testosterone surge in male mice regulates CL biosynthesis and remodeling in the CC, inducing a sex-dimorphic fatty acid composition. In male's CC, CL is more susceptible to peroxidation, likely explaining the testosterone-dependent induction of neuroprotective molecules such as UCP-2. These differences may account for the sex-dependent mitochondrial susceptibility after perinatal hypoxia/ischemia.Instituto de Investigaciones Bioquímicas de La Plat

    Sex Differences in Hypothalamic Changes and the Metabolic Response of TgAPP Mice to a High Fat Diet

    Get PDF
    The propensity to develop neurodegenerative diseases is influenced by diverse factors including genetic background, sex, lifestyle, including dietary habits and being overweight, and age. Indeed, with aging, there is an increased incidence of obesity and neurodegenerative processes, both of which are associated with inflammatory responses, in a sex-specific manner. High fat diet (HFD) commonly leads to obesity and markedly affects metabolism, both peripherally and centrally. Here we analyzed the metabolic and inflammatory responses of middle-aged (11–12 months old) transgenic amyloid precursor protein (TgAPP) mice of both sexes to HFD for 18 weeks (starting at 7–8 months of age). We found clear sex differences with females gaining significantly more weight and fat mass than males, with a larger increase in circulating leptin levels and expression of inflammatory markers in visceral adipose tissue. Glycemia and insulin levels increased in HFD fed mice of both sexes, with TgAPP mice being more affected than wild type (WT) mice. In the hypothalamus, murine amyloid β (Aβ) levels were increased by HFD intake exclusively in males, reaching statistical significance in TgAPP males. On a low fat diet (LFD), TgAPP males had significantly lower mRNA levels of the anorexigenic neuropeptide proopiomelanocortin (POMC) than WT males, with HFD intake decreasing the expression of the orexigenic neuropeptides Agouti-related peptide (AgRP) and neuropeptide Y (NPY), especially in TgAPP mice. In females, HFD increased POMC mRNA levels but had no effect on AgRP or NPY mRNA levels, and with no effect on genotype. There was no effect of diet or genotype on the hypothalamic inflammatory markers analyzed or the astrogliosis marker glial acidic protein (GFAP); however, levels of the microglial marker Iba-1 increased selectively in male TgAPP mice. In summary, the response to HFD intake was significantly affected by sex, with fewer effects due to genotype. Hypothalamic inflammatory cytokine expression and astrogliosis were little affected by HFD in middle-aged mice, although in TgAPP males, which showed increased Aβ, there was microglial activation. Thus, excess intake of diets high in fat should be avoided because of its possible detrimental consequences
    corecore